ERNÄHRUNG

Eine gesunde und ausge­wach­sene Ernäh­rung kann Ihnen präven­tiv dabei helfen, das Risiko einer Krebs­er­kran­kung zu mini­mie­ren. Dabei müssen Sie nicht immer auf unge­wöhn­li­che Lebens­mit­tel aus aller Welt zurück­grei­fen, regio­na­les Obst und Gemüse helfen in beson­de­rem Maße!

Ein grüner Smoothie

ERNÄHRUNGSTIPPS UND EMPFEHLUNGEN

An den Empfeh­lun­gen des World Cancer Rese­arch Fund Inter­na­tio­nal zur Krebsprävention kann man erken­nen, welchen Einfluss gerade auch die Ernährung auf das Erkran­kungs­ri­siko haben kann, sei es in Form eines gestei­ger­ten Verzehrs von Fast Food und Soft­drinks und die konse­quente Gewichts­zu­nahme, oder des protek­ti­ven Nutzens einer ausrei­chen­den Zufuhr von Gemüse.

Mit Bezug auf die Empfeh­lung für den Verzehr von mehr Gemüse, Obst, Hülsenfrüchten und Voll­korn sollen im Folgen­den einige Lebens­mit­tel und Lebens­mit­tel­grup­pen vorge­stellt werden, die im beson­de­ren Maße Einfluss auf das Krebs­ri­siko, und wahr­schein­lich auf die Gesund­heit gene­rell nehmen können. Denn obwohl prin­zi­pi­ell alle Gemüse- und Obst­sor­ten als gesund betrach­tet werden können, gibt es einige, die ein beson­ders großes Poten­tial mit sich bringen.

DIE BESTEN LEBENSMITTELGRUPPEN ZUR KREBSPRÄVENTION

KREUZBLÜTER

Die erste wich­tige Lebens­mit­tel­gruppe sind die soge­nann­ten Kreuzblütler, auch Bras­si­caceae oder Cruci­ferae genannt. Zu dieser Fami­lie zählen Gemüsesorten wie Brok­koli, Blumen­kohl, Weiß‑, Rosen‑, Rot- und China- kohl, sowie Pak Choi und Kohl­rabi. Gerade Brok­koli steht wohl wie kaum eine andere Pflanze sinn­bild­lich für eine gesunde Ernährung. Und das nicht ohne Grund. So exis­tiert ein gut doku­men­tier­ter Zusam­men­hang zwischen dem regelmäßigen Verzehr von Kreuzblütler-Gemüse und einem gerin­ge­ren Risiko für Krebs­er­kran­kun­gen an u.a. Blase, Brust, Lunge, Magen, Dick­darm, Mundhöhle, Rachen, Speiseröhre und Niere [20–30].

mehr lesen…

Brokkoli: Ein gesunder Kreuzblueter

ZWIEBELGEWÄCHSE

Zwiebelgewächse

Die nächste Pflan­zen­fa­mi­lie wirkt vergli­chen mit den Kreuzblütlern eher unschein­bar: Die Zwiebelgewächse. Ob Knob­lauch, Gemüsezwiebel, Porree, Schnit­to­der Bärlauch, alle Vertre­ter dieser Fami­lie zeich­nen sich durch bestimmte Schwe­fel­ver­bin­dun­gen aus, die ihnen sowohl ihr charak­te­ris­ti­sches Aroma, als auch ihren gesund­heit­li­chen Nutzen verleihen.

Es gibt wohl kaum eine Pflan­zen­fa­mi­lie, die sich derart univer­sell in der kuli­na­ri­schen Tradi­tion verschie­de­ner Kultu­ren wieder­fin­det, wie Zwiebelgewächse.
mehr lesen…

BEEREN

Der Verzehr von Obst sollte fester Bestand­teil einer ausge­wo­ge­nen Ernährung sein und gehört daher auch zu den Empfeh­lun­gen des WCRF. Jedoch gibt es zwischen den unter­schied­li­chen Obst­sor­ten durch­aus Unter­schiede in Bezug auf den gesund­heit­li­chen Nutzen, vor allem unter Berücksichtigung des Zucker­ge­halts. So sind Bana­nen sicher­lich nicht unge­sund, sollte jedoch beispiels­weise im Hinblick auf Übergewicht nicht dutzend­weise verzehrt werden. In diesem Sinne kann man durch­aus sagen, dass Beeren die viel­leicht gesündesten Obst­sor­ten darstel­len, da sie einen nied­ri­gen Zucker­ge­halt mit einem hohen Gehalt an sekundären Pflan­zen­stof­fen kombinieren.

mehr lesen…

QUELLEN

Quel­len:

[1] World Cancer Rese­arch Fund/American Insti­tute for Cancer Rese­arch. Conti­nuous Update Project Expert Report 2018. Recom­men­da­ti­ons and public health and policy impli­ca­ti­ons. Avail­able at dietandcancerreport.org

[2] https://www.krebsgesellschaft.de/onko-internetportal/basis-informationen-krebs/vorsorge-und-frueherkennung/krebsfrueherkennungsuntersuchungen-fuer-frauen.html

[3] https://www.krebsgesellschaft.de/onko-internetportal/basis-informationen-krebs/vorsorge-und-frueherkennung/krebsfrueherkennungsuntersuchungen-fuer-maenner.html

[4]https://www.rki.de/DE/Content/Kommissionen/STIKO/Empfehlungen/Aktuelles/Impfkalender.pdf?__blob=publicationFile

[5] Lanier, J. B., Bury, D. C., & Richard­son, S. W. (2016). Diet and Physi­cal Acti­vity for Cardio­vascu­lar Dise­ase Preven­tion. Ameri­can Family Physi­cian, 93(11), 919–924.

[6] Aune, D., Norat, T., Leit­zmann, M., Tonstad, S., & Vatten, L. J. (2015). Physi­cal acti­vity and the risk of type 2 diabe­tes: a syste­ma­tic review and dose-response meta-analy­sis. Euro­pean Jour­nal of Epide­mio­logy, 30(7), 529–542. https://doi.org/10.1007/s10654-015‑0056‑z

[7] Troy, K. L., Mancuso, M. E., Butler, T. A., & John­son, J. E. (2018). Exer­cise Early and Often: Effects of Physi­cal Acti­vity and Exer­cise on Women’s Bone Health. Inter­na­tio­nal Jour­nal of Envi­ron­men­tal Rese­arch and Public Health, 15(5). https://doi.org/10.3390/ijerph15050878

[8] Alzahrani, H., Mackey, M., Stama­ta­kis, E., Zadro, J. R., & Shir­ley, D. (2019). The asso­cia­tion between physi­cal acti­vity and low back pain: a syste­ma­tic review  and meta-analy­sis of obser­va­tio­nal studies. Scien­ti­fic Reports, 9(1), 8244. https://doi.org/10.1038/s41598-019–44664‑8

[9] Santos-Lozano, A., Pareja-Galeano, H., Sanchis-Gomar, F., Quin­dos-Rubial, M., Fiuza-Luces, C., Cristi-Montero, C., Emanuele, E., Garata­chea, N., & Lucia, A. (2016). Physi­cal Acti­vity and Alzhei­mer Dise­ase: A Protec­tive Asso­cia­tion. Mayo Clinic Procee­dings, 91(8), 999‑1020. https://doi.org/10.1016/j.mayocp.2016.04.024

[10] http://www.euro.who.int/de/data-and-evidence/european-health-report/european-health-report-2012/fact-sheets/fact-sheet-leading-causes-of-death-in-europe

[11] Barchetta, I., Cimini, F. A., Cicca­relli, G., Baroni, M. G., & Cavallo, M. G. (2019). Sick fat: the good and the bad of old and new circu­la­ting markers of adipose tissue inflamma­tion. Jour­nal of Endocri­no­lo­gi­cal Inves­ti­ga­tion, 42(11), 1257–1272. https://doi.org/10.1007/s40618-019–01052‑3

[12] Daley, C. A., Abbott, A., Doyle, P. S., Nader, G. A., & Larson, S. (2010). A review of fatty acid profiles and anti­oxi­dant content in grass-fed and grain-fed beef. Nutri­tion Jour­nal, 9, 10. https://doi.org/10.1186/1475–2891‑9–10

[13] Turesky, R. J. (2018). Mecha­nistic Evidence for Red Meat and Proces­sed Meat Intake and Cancer Risk: A Follow-up on the Inter­na­tio­nal Agency for Rese­arch on Cancer Evalua­tion of 2015. Chimia, 72(10), 718–724. https://doi.org/10.2533/chimia.2018.718

[14] Sepah­pour, S., Selamat, J., Khatib, A., Manap, M. Y. A., Abdull Razis, A. F., & Hajeb, P. (2018). Inhi­bi­tory effect of mixture herbs/spices on forma­tion of hete­ro­cy­clic amines and muta­ge­nic acti­vity of gril­led beef. Food Addi­ti­ves & Conta­mi­nants. Part A, Chemi­stry, Analy­sis, Control, Expo­sure & Risk Assess­ment, 35(10), 1911–1927. https://doi.org/10.1080/19440049.2018.1488085

[15] Cash­man, K. D., Dowling, K. G., Skra­ba­kova, Z., Gonza­lez-Gross, M., Valtuena, J., De Henauw, S., Moreno, L., Dams­gaard, C. T., Micha­el­sen, K. F., Molgaard, C., Jorde, R., Grim­nes, G., Moscho­nis, G., Mavro­gi­anni, C., Manios, Y., Thamm, M., Mensink, G. B., Raben­berg, M., Busch, M. A., … Kiely, M. (2016). Vitamin D defi­ci­ency in Europe: pande­mic? The Ameri­can Jour­nal of Clini­cal Nutri­tion, 103(4), 1033–1044. https://doi.org/10.3945/ajcn.115.120873

[16] Rose, A. A. N., Elser, C., Ennis, M., & Good­win, P. J. (2013). Blood levels of vitamin D and early stage breast cancer progno­sis: a syste­ma­tic review and meta-analy­sis. Breast Cancer Rese­arch and Treat­ment, 141(3), 331–339. https://doi.org/10.1007/s10549-013‑2713‑9

[17] Colussi, G., Catena, C., Novello, M., Bertin, N., & Sechi, L. A. (2017). Impact of omega‑3 poly­un­sa­tu­ra­ted fatty acids on vascu­lar func­tion and blood pres­sure: Rele­vance for cardio­vascu­lar outco­mes. Nutri­tion, Meta­bo­lism, and Cardio­vascu­lar Dise­a­ses : NMCD, 27(3), 191–200. https://doi.org/10.1016/j.numecd.2016.07.011

[18] Abdel­ha­mid, A. S., Brown, T. J., Brai­nard, J. S., Biswas, P., Thorpe, G. C., Moore, H. J., Deane, K. H., Summer­bell, C. D., Wort­hing­ton, H. V, Song, F., & Hooper, L. (2020). Omega‑3 fatty acids for the primary and secon­dary preven­tion of cardio­vascu­lar dise­ase. The Coch­rane Data­base of Syste­ma­tic Reviews, 3, CD003177. https://doi.org/10.1002/14651858.CD003177.pub5

[19] Perna, S., Alal­wan, T. A., Al-Thawadi, S., Negro, M., Parim­belli, M., Cerullo, G., Gasparri, C., Guer­riero, F., Infan­tino, V., Diana, M., D’Antona, G., & Ronda­nelli, M. (2020). Evidence-Based Role of Nutri­ents and Anti­oxi­d­ants for Chro­nic Pain Manage­ment in  Muscu­los­keletal Frailty and Sarco­pe­nia in Aging. Geriatrics (Basel, Switz­er­land), 5(1). https://doi.org/10.3390/geriatrics5010016

[20] Mich­aud, D. S., Spie­gel­man, D., Clin­ton, S. K., Rimm, E. B., Willett, W. C., & Giovannucci, E. L. (1999). Fruit and vege­ta­ble intake and inci­dence of blad­der cancer in a male prospec­tive  cohort. Jour­nal of the Natio­nal Cancer Insti­tute, 91(7), 605–613. https://doi.org/10.1093/jnci/91.7.605

[21] Zhang, C.-X., Ho, S. C., Chen, Y.-M., Fu, J.-H., Cheng, S.-Z., & Lin, F.-Y. (2009). Grea­ter vege­ta­ble and fruit intake is asso­cia­ted with a lower risk of breast cancer among Chinese women. Inter­na­tio­nal Jour­nal of Cancer, 125(1), 181–188. https://doi.org/10.1002/ijc.24358

[22] Lam, T. K., Ruczinski, I., Helz­lsouer, K. J., Shug­art, Y. Y., Caul­field, L. E., & Alberg, A. J. (2010). Cruci­fe­rous vege­ta­ble intake and lung cancer risk: a nested case-control study matched on ciga­rette smoking. Cancer Epide­mio­logy, Biomar­kers & Preven­tion : A Publi­ca­tion of the Ameri­can Asso­cia­tion for Cancer Rese­arch, Cospon­so­red by the Ameri­can Society of Preven­tive Onco­logy, 19(10), 2534–2540. https://doi.org/10.1158/1055–9965.EPI-10–0475

[23] Thom­son, C. A., Rock, C. L., Thomp­son, P. A., Caan, B. J., Cuss­ler, E., Flatt, S. W., & Pierce, J. P. (2011). Vege­ta­ble intake is asso­cia­ted with redu­ced breast cancer recur­rence in tamoxi­fen users: a secon­dary analy­sis from the Women’s Healthy Eating and Living Study. Breast Cancer Rese­arch and Treat­ment, 125(2), 519–527. https://doi.org/10.1007/s10549-010‑1014‑9

[24] Masala, G., Assedi, M., Bendi­nelli, B., Ermini, I., Sieri, S., Grioni, S., Sacer­dote, C., Ricceri, F., Panico, S., Matti­ello, A., Tumino, R., Giur­da­nella, M. C., Berrino, F., Saieva, C., & Palli, D. (2012). Fruit and vege­ta­bles consump­tion and breast cancer risk: the EPIC Italy study. Breast Cancer Rese­arch and Treat­ment, 132(3), 1127–1136. https://doi.org/10.1007/s10549-011‑1939‑7

[25] Bosetti, C., Filo­meno, M., Riso, P., Pole­sel, J., Levi, F., Tala­mini, R., Montella, M., Negri, E., Fran­ce­schi, S., & La Vecchia, C. (2012). Cruci­fe­rous vege­ta­bles and cancer risk in a network of case-control studies. Annals of Onco­logy : Offi­cial Jour­nal of the Euro­pean Society for Medi­cal Onco­logy, 23(8), 2198–2203. https://doi.org/10.1093/annonc/mdr604

[26] Wu, Q.-J., Yang, Y., Wang, J., Han, L.-H., & Xiang, Y.-B. (2013). Cruci­fe­rous vege­ta­ble consump­tion and gastric cancer risk: a meta-analy­sis of epide­mio­lo­gi­cal studies. Cancer Science, 104(8), 1067–1073. https://doi.org/10.1111/cas.12195

[27] Wu, Q. J., Xie, L., Zheng, W., Vogt­mann, E., Li, H. L., Yang, G., Ji, B. T., Gao, Y. T., Shu, X. O., & Xiang, Y. B. (2013). Cruci­fe­rous vege­ta­bles consump­tion and the risk of female lung cancer: a prospec­tive study and a meta-analy­sis. Annals of Onco­logy : Offi­cial Jour­nal of the Euro­pean Society for Medi­cal Onco­logy, 24(7), 1918–1924. https://doi.org/10.1093/annonc/mdt119

[28] Suzuki, R., Iwasaki, M., Hara, A., Inoue, M., Sasa­zuki, S., Sawada, N., Yamaji, T., Shimazu, T., & Tsugane, S. (2013). Fruit and vege­ta­ble intake and breast cancer risk defi­ned by estro­gen and proges­te­rone recep­tor status: the Japan Public Health Center-based Prospec­tive Study. Cancer Causes & Control : CCC, 24(12), 2117–2128. https://doi.org/10.1007/s10552-013‑0289‑7

[29] Tse, G., & Eslick, G. D. (2014). Cruci­fe­rous vege­ta­bles and risk of colo­rec­tal neoplasms: a syste­ma­tic review and  meta-analy­sis. Nutri­tion and Cancer, 66(1), 128–139. https://doi.org/10.1080/01635581.2014.852686

[30] Abbaoui, B., Lucas, C. R., Riedl, K. M., Clin­ton, S. K., & Morta­zavi, A. (2018). Cruci­fe­rous Vege­ta­bles, Isothio­cya­na­tes, and Blad­der Cancer Preven­tion. Mole­cu­lar Nutri­tion & Food Rese­arch, 62(18), e1800079. https://doi.org/10.1002/mnfr.201800079

[31] Cona­way, C. C., Geta­hun, S. M., Liebes, L. L., Pusa­teri, D. J., Topham, D. K., Botero-Omary, M., & Chung, F. L. (2000). Dispo­si­tion of gluco­si­no­lates and sulfora­phane in humans after ingestion of stea­med and fresh broc­coli. Nutri­tion and Cancer, 38(2), 168–178. https://doi.org/10.1207/S15327914NC382_5

[32] Okunade, O., Niran­jan, K., Ghawi, S. K., Kuhnle, G., & Meth­ven, L. (2018). Supple­men­ta­tion of the Diet by Exoge­nous Myro­si­nase via Mustard Seeds to Incre­ase the Bioavai­la­bi­lity of Sulfora­phane in Healthy Human Subjects after the Consump­tion of Cooked Broc­coli. Mole­cu­lar Nutri­tion and Food Rese­arch. https://doi.org/10.1002/mnfr.201700980

[33] Stein­metz, K. A., Kushi, L. H., Bostick, R. M., Folsom, A. R., & Potter, J. D. (1994). Vege­ta­bles, fruit, and colon cancer in the Iowa Women’s Health Study. Ameri­can Jour­nal of Epide­mio­logy, 139(1), 1–15. https://doi.org/10.1093/oxfordjournals.aje.a116921

[34] Chal­lier, B., Perar­nau, J. M., & Viel, J. F. (1998). Garlic, onion and cereal fibre as protec­tive factors for breast cancer: a French  case-control study. Euro­pean Jour­nal of Epide­mio­logy, 14(8), 737–747. https://doi.org/10.1023/a:1007512825851

[35] Gao, C. M., Take­zaki, T., Ding, J. H., Li, M. S., & Tajima, K. (1999). Protec­tive effect of allium vege­ta­bles against both esopha­geal and stomach cancer: a simul­ta­ne­ous case-refe­rent study of a high-epide­mic area in Jiangsu Province, China. Japa­nese Jour­nal of Cancer Rese­arch : Gann, 90(6), 614–621. https://doi.org/10.1111/j.1349–7006.1999.tb00791.x

[36] Hsing, A. W., Chok­ka­lingam, A. P., Gao, Y.-T., Madi­gan, M. P., Deng, J., Grid­ley, G., & Frau­meni, J. F. J. (2002). Allium vege­ta­bles and risk of prostate cancer: a popu­la­tion-based study. Jour­nal of the Natio­nal Cancer Insti­tute, 94(21), 1648–1651. https://doi.org/10.1093/jnci/94.21.1648

[37] Chan, J. M., Wang, F., & Holly, E. A. (2005). Vege­ta­ble and fruit intake and pancrea­tic cancer in a popu­la­tion-based case-control study in the San Fran­cisco bay area. Cancer Epide­mio­logy, Biomar­kers & Preven­tion : A Publi­ca­tion of the Ameri­can Asso­cia­tion for Cancer Rese­arch, Cospon­so­red by the Ameri­can Society of Preven­tive Onco­logy, 14(9), 2093–2097. https://doi.org/10.1158/1055–9965.EPI-05–0226

[38] Wu, X., Shi, J., Fang, W.-X., Guo, X.-Y., Zhang, L.-Y., Liu, Y.-P., & Li, Z. (2019). Allium vege­ta­bles are asso­cia­ted with redu­ced risk of colo­rec­tal cancer: A hospi­tal-based matched case-control study in China. Asia-Paci­fic Jour­nal of Clini­cal Onco­logy, 15(5), e132–e141. https://doi.org/10.1111/ajco.13133

[39] Fung, T. T., Chiuve, S. E., Willett, W. C., Hank­in­son, S. E., Hu, F. B., & Holmes, M. D. (2013). Intake of speci­fic fruits and vege­ta­bles in rela­tion to risk of estro­gen recep­tor-nega­tive breast cancer among post­me­no­pau­sal women. Breast Cancer Rese­arch and Treat­ment, 138(3), 925–930. https://doi.org/10.1007/s10549-013‑2484‑3

[40] Jaga­nathan, S. K., Vella­y­ap­pan, M. V., Nara­sim­han, G., Supri­yanto, E., Octo­rina Dewi, D. E., Nara­ya­nan, A. L. T., Balaji, A., Subra­ma­nian, A. P., & Yusof, M. (2014). Chemo­pre­ven­tive effect of apple and berry fruits against colon cancer. World Jour­nal of Gastro­en­te­ro­logy, 20(45), 17029–17036. https://doi.org/10.3748/wjg.v20.i45.17029

[41] Afrin, S., Giam­pieri, F., Gaspar­rini, M., Forbes-Hernan­dez, T. Y., Varela-Lopez, A., Quiles, J. L., Mezzetti, B., & Battino, M. (2016). Chemo­pre­ven­tive and Thera­peu­tic Effects of Edible Berries: A Focus on Colon Cancer Preven­tion and Treat­ment. Mole­cu­les (Basel, Switz­er­land), 21(2), 169. https://doi.org/10.3390/molecules21020169

[42] Yang, G., Shu, X.-O., Li, H., Chow, W.-H., Ji, B.-T., Zhang, X., Gao, Y.-T., & Zheng, W. (2007). Prospec­tive cohort study of green tea consump­tion and colo­rec­tal cancer risk in women. Cancer Epide­mio­logy, Biomar­kers & Preven­tion : A Publi­ca­tion of the Ameri­can Asso­cia­tion for Cancer Rese­arch, Cospon­so­red by the Ameri­can Society of Preven­tive Onco­logy, 16(6), 1219–1223. https://doi.org/10.1158/1055–9965.EPI-07–0097

[43] Zhang, M., Holman, C. D. J., Huang, J., & Xie, X. (2007). Green tea and the preven­tion of breast cancer: a case-control study in Southe­ast  China. Carci­no­ge­ne­sis, 28(5), 1074–1078. https://doi.org/10.1093/carcin/bgl252

[44] Kura­ha­shi, N., Sasa­zuki, S., Iwasaki, M., Inoue, M., & Tsugane, S. (2008). Green tea consump­tion and prostate cancer risk in Japa­nese men: a prospec­tive study. Ameri­can Jour­nal of Epide­mio­logy, 167(1), 71–77. https://doi.org/10.1093/aje/kwm249

[45] Yang, C. S., Wang, X., Lu, G., & Pici­nich, S. C. (2009). Cancer preven­tion by tea: animal studies, mole­cu­lar mecha­nisms and human rele­vance. Nature Reviews. Cancer, 9(6), 429–439. https://doi.org/10.1038/nrc2641

[46] Tang, N., Wu, Y., Zhou, B., Wang, B., & Yu, R. (2009). Green tea, black tea consump­tion and risk of lung cancer: a meta-analy­sis. Lung Cancer (Amster­dam, Nether­lands), 65(3), 274–283. https://doi.org/10.1016/j.lungcan.2008.12.002

[47] Deandrea, S., Foschi, R., Galeone, C., La Vecchia, C., Negri, E., & Hu, J. (2010). Is tempe­ra­ture an effect modi­fier of the asso­cia­tion between green tea intake and gastric cancer risk? Euro­pean Jour­nal of Cancer Preven­tion : The Offi­cial Jour­nal of the Euro­pean Cancer Preven­tion Orga­ni­sa­tion (ECP), 19(1), 18–22. https://doi.org/10.1097/CEJ.0b013e328330eb1a

[48] Nechuta, S., Shu, X.-O., Li, H.-L., Yang, G., Ji, B.-T., Xiang, Y.-B., Cai, H., Chow, W.-H., Gao, Y.-T., & Zheng, W. (2012). Prospec­tive cohort study of tea consump­tion and risk of diges­tive system cancers: results from the Shang­hai Women’s Health Study. The Ameri­can Jour­nal of Clini­cal Nutri­tion, 96(5), 1056–1063. https://doi.org/10.3945/ajcn.111.031419

[49] Ni, C.-X., Gong, H., Liu, Y., Qi, Y., Jiang, C.-L., & Zhang, J.-P. (2017). Green Tea Consump­tion and the Risk of Liver Cancer: A Meta-Analy­sis. Nutri­tion and Cancer, 69(2), 211–220. https://doi.org/10.1080/01635581.2017.1263754

[50] Guo, Y., Zhi, F., Chen, P., Zhao, K., Xiang, H., Mao, Q., Wang, X., & Zhang, X. (2017). Green tea and the risk of prostate cancer: A syste­ma­tic review and meta-analy­sis. Medi­cine, 96(13), e6426. https://doi.org/10.1097/MD.0000000000006426

[51] Creed, J. H., Smith-Warner, S. A., Gerke, T. A., & Egan, K. M. (2020). A prospec­tive study of coffee and tea consump­tion and the risk of glioma in the UK Biobank. Euro­pean Jour­nal of Cancer (Oxford, England : 1990), 129, 123–131. https://doi.org/10.1016/j.ejca.2020.01.012

[52] Gonza­lez, C. A., & Salas-Salvado, J. (2006). The poten­tial of nuts in the preven­tion of cancer. The British Jour­nal of Nutri­tion, 96 Suppl 2, S87-94. https://doi.org/10.1017/bjn20061868

[53] Demark-Wahne­fried, W., Pola­scik, T. J., George, S. L., Swit­zer, B. R., Madden, J. F., Ruffin, M. T. 4th, Snyder, D. C., Owzar, K., Hars, V., Albala, D. M., Walt­her, P. J., Robert­son, C. N., Moul, J. W., Dunn, B. K., Bren­ner, D., Mina­sian, L., Stella, P., & Voll­mer, R. T. (2008). Flax­seed supple­men­ta­tion (not dietary fat restric­tion) redu­ces prostate cancer proli­fe­ra­tion rates in men pres­ur­gery. Cancer Epide­mio­logy, Biomar­kers & Preven­tion : A Publi­ca­tion of the Ameri­can Asso­cia­tion for Cancer Rese­arch, Cospon­so­red by the Ameri­can Society of Preven­tive Onco­logy, 17(12), 3577–3587. https://doi.org/10.1158/1055–9965.EPI-08–0008

[54] Buck, K., Zained­din, A. K., Vrie­ling, A., Lins­ei­sen, J., & Chang-Claude, J. (2010). Meta-analy­ses of lign­ans and ente­ro­li­gn­ans in rela­tion to breast cancer risk. The Ameri­can Jour­nal of Clini­cal Nutri­tion, 92(1), 141–153. https://doi.org/10.3945/ajcn.2009.28573

[55] Bao, Y., Hu, F. B., Giovannucci, E. L., Wolpin, B. M., Stamp­fer, M. J., Willett, W. C., & Fuchs, C. S. (2013). Nut consump­tion and risk of pancrea­tic cancer in women. British Jour­nal of Cancer, 109(11), 2911–2916. https://doi.org/10.1038/bjc.2013.665

[56] Bao, Y., Han, J., Hu, F. B., Giovannucci, E. L., Stamp­fer, M. J., Willett, W. C., & Fuchs, C. S. (2013). Asso­cia­tion of nut consump­tion with total and cause-speci­fic morta­lity. The New England Jour­nal of Medi­cine, 369(21), 2001–2011. https://doi.org/10.1056/NEJMoa1307352

[57] Lowcock, E. C., Cotter­chio, M., & Boucher, B. A. (2013). Consump­tion of flax­seed, a rich source of lign­ans, is asso­cia­ted with redu­ced breast cancer risk. Cancer Causes & Control : CCC, 24(4), 813–816. https://doi.org/10.1007/s10552-013‑0155‑7

[58] Guasch-Ferre, M., Bullo, M., Marti­nez-Gonza­lez, M. A., Ros, E., Corella, D., Estruch, R., Fito, M., Aros, F., Warn­berg, J., Fiol, M., Lape­tra, J., Vinyo­les, E., Lamuela-Raventos, R. M., Serra-Majem, L., Pinto, X., Ruiz-Gutier­rez, V., Basora, J., & Salas-Salvado, J. (2013). Frequency of nut consump­tion and morta­lity risk in the PREDIMED nutri­tion inter­ven­tion trial. BMC Medi­cine, 11, 164. https://doi.org/10.1186/1741–7015-11–164

[59] Hash­emian, M., Murphy, G., Etemadi, A., Dawsey, S. M., Liao, L. M., & Abnet, C. C. (2017). Nut and peanut butter consump­tion and the risk of esopha­geal and gastric cancer subty­pes. The Ameri­can Jour­nal of Clini­cal Nutri­tion, 106(3), 858–864. https://doi.org/10.3945/ajcn.117.159467

[60] DeLuca, J. A. A., Garcia-Villa­toro, E. L., & Allred, C. D. (2018). Flax­seed Bioac­tive Compounds and Colo­rec­tal Cancer Preven­tion. Current Onco­logy Reports, 20(8), 59. https://doi.org/10.1007/s11912-018‑0704‑z

[61] Lee, J., Shin, A., Oh, J. H., & Kim, J. (2018). The rela­ti­ons­hip between nut intake and risk of colo­rec­tal cancer: a case control study. Nutri­tion Jour­nal, 17(1), 37. https://doi.org/10.1186/s12937-018‑0345‑y

[62] Kim, Y., Keogh, J., & Clif­ton, P. M. (2018). Nuts and Cardio-Meta­bo­lic Dise­ase: A Review of Meta-Analy­ses. Nutri­ents, 10(12). https://doi.org/10.3390/nu10121935

[63] Long, J., Ji, Z., Yuan, P., Long, T., Liu, K., Li, J., & Cheng, L. (2020). Nut Consump­tion and Risk of Cancer: A Meta-analy­sis of Prospec­tive Studies. Cancer Epide­mio­logy, Biomar­kers & Preven­tion : A Publi­ca­tion of the Ameri­can Asso­cia­tion for Cancer Rese­arch, Cospon­so­red by the Ameri­can Society of Preven­tive Onco­logy, 29(3), 565–573. https://doi.org/10.1158/1055–9965.EPI-19–1167

[64] Cirmi, S., Navarra, M., Woodside, J. V, & Cant­well, M. M. (2018). Citrus fruits intake and oral cancer risk: A syste­ma­tic review and meta-analy­sis. Phar­ma­co­lo­gi­cal Rese­arch, 133, 187–194. https://doi.org/10.1016/j.phrs.2018.05.008

[65] Zhao, W., Liu, L., & Xu, S. (2018). Inta­kes of citrus fruit and risk of esopha­geal cancer: A meta-analy­sis. Medi­cine, 97(13), e0018. https://doi.org/10.1097/MD.0000000000010018

[66] Bailey, D. G., & Dresser, G. K. (2004). Inter­ac­tions between grape­fruit juice and cardio­vascu­lar drugs. Ameri­can Jour­nal of Cardio­vascu­lar Drugs : Drugs, Devices, and Other Inter­ven­ti­ons, 4(5), 281–297. https://doi.org/10.2165/00129784–200404050-00002

[67] Theile, D., Hohmann, N., Kiemel, D., Gattuso, G., Barreca, D., Mikus, G., Haefeli, W. E., Schwen­ger, V., & Weiss, J. (2017). Clemen­tine juice has the poten­tial for drug inter­ac­tions – In vitro compa­ri­son with grape­fruit and manda­rin juice. Euro­pean Jour­nal of Phar­maceu­ti­cal Scien­ces : Offi­cial Jour­nal of the Euro­pean Fede­ra­tion for Phar­maceu­ti­cal Scien­ces, 97, 247–256. https://doi.org/10.1016/j.ejps.2016.11.021

[68]Michaud, D. S., Feska­nich, D., Rimm, E. B., Colditz, G. A., Spei­zer, F. E., Willett, W. C., & Giovannucci, E. (2000). Intake of speci­fic caro­te­no­ids and risk of lung cancer in 2 prospec­tive US cohorts. The Ameri­can Jour­nal of Clini­cal Nutri­tion, 72(4), 990–997. https://doi.org/10.1093/ajcn/72.4.990

[69] Wu, K., Erdman, J. W. J., Schwartz, S. J., Platz, E. A., Leit­zmann, M., Clin­ton, S. K., DeGroff, V., Willett, W. C., & Giovannucci, E. (2004). Plasma and dietary caro­te­no­ids, and the risk of prostate cancer: a nested case-control study. Cancer Epide­mio­logy, Biomar­kers & Preven­tion : A Publi­ca­tion of the Ameri­can Asso­cia­tion for Cancer Rese­arch, Cospon­so­red by the Ameri­can Society of Preven­tive Onco­logy, 13(2), 260–269. https://doi.org/10.1158/1055–9965.epi-03–0012

[70]Zhang, X., Spie­gel­man, D., Bagli­etto, L., Bern­stein, L., Boggs, D. A., van den Brandt, P. A., Buring, J. E., Gapstur, S. M., Giles, G. G., Giovannucci, E., Good­man, G., Hank­in­son, S. E., Helz­lsouer, K. J., Horn-Ross, P. L., Inoue, M., Jung, S., Khudya­kov, P., Lars­son, S. C., Lof, M., … Smith-Warner, S. A. (2012). Caro­te­noid inta­kes and risk of breast cancer defi­ned by estro­gen recep­tor and proges­te­rone recep­tor status: a pooled analy­sis of 18 prospec­tive cohort studies. The Ameri­can Jour­nal of Clini­cal Nutri­tion, 95(3), 713–725. https://doi.org/10.3945/ajcn.111.014415

[71] Xu, X., Cheng, Y., Li, S., Zhu, Y., Xu, X., Zheng, X., Mao, Q., & Xie, L. (2014). Dietary carrot consump­tion and the risk of prostate cancer. Euro­pean Jour­nal of Nutri­tion, 53(8), 1615–1623. https://doi.org/10.1007/s00394-014‑0667‑2

[72] Fall­ahzadeh, H., Jalali, A., Momay­y­ezi, M., & Bazm, S. (2015). Effect of Carrot Intake in the Preven­tion of Gastric Cancer: A Meta-Analy­sis. Jour­nal of Gastric Cancer, 15(4), 256–261. https://doi.org/10.5230/jgc.2015.15.4.256

[73] Luo, X., Lu, H., Li, Y., & Wang, S. (2017). Carrot intake and inci­dence of urothe­lial cancer: a syste­ma­tic review and meta-analy­sis. Onco­tar­get, 8(44), 77957–77962. https://doi.org/10.18632/oncotarget.19832

[74] Chen, H., Shao, F., Zhang, F., & Miao, Q. (2018). Asso­cia­tion between dietary carrot intake and breast cancer: A meta-analy­sis. Medi­cine, 97(37), e12164. https://doi.org/10.1097/MD.0000000000012164

[75] Rowles, J. L. 3rd, Ranard, K. M., Apple­gate, C. C., Jeon, S., An, R., & Erdman, J. W. J. (2018). Proces­sed and raw tomato consump­tion and risk of prostate cancer: a syste­ma­tic review and dose-response meta-analy­sis. Prostate Cancer and Prosta­tic Dise­a­ses, 21(3), 319–336. https://doi.org/10.1038/s41391-017‑0005‑x

[76] Xu, H., Jiang, H., Yang, W., Song, F., Yan, S., Wang, C., Fu, W., Li, H., Lyu, C., Gan, Y., & Lu, Z. (2019). Is carrot consump­tion asso­cia­ted with a decre­a­sed risk of lung cancer? A meta-analy­sis of obser­va­tio­nal studies. The British Jour­nal of Nutri­tion, 122(5), 488–498. https://doi.org/10.1017/S0007114519001107

[77] Mazidi, M., Ferns, G. A., & Banach, M. (2020). A high consump­tion of tomato and lyco­pene is asso­cia­ted with a lower risk of cancer morta­lity: results from a multi-ethnic cohort. Public Health Nutri­tion, 1–7. https://doi.org/10.1017/S1368980019003227

[78] Deding, U., Baatrup, G., Chris­ten­sen, L. P., & Kobaek-Larsen, M. (2020). Carrot Intake and Risk of Colo­rec­tal Cancer: A Prospec­tive Cohort Study of 57,053 Danes. Nutri­ents, 12(2). https://doi.org/10.3390/nu12020332

[79] Stahl, W., & Sies, H. (2012). beta-Caro­tene and other caro­te­no­ids in protec­tion from sunlight. The Ameri­can Jour­nal of Clini­cal Nutri­tion, 96(5), 1179S-84S. https://doi.org/10.3945/ajcn.112.034819

[80] Platel, K., & Srini­va­san, K. (2016). Bioavai­la­bi­lity of Micro­nut­ri­ents from Plant Foods: An Update. Criti­cal Reviews in Food Science and Nutri­tion, 56(10), 1608–1619. https://doi.org/10.1080/10408398.2013.781011

[81] Rinaldi de Alva­renga, J. F., Tran, C., Hurtado-Barroso, S., Marti­nez-Huel­amo, M., Illan, M., & Lamuela-Raventos, R. M. (2017). Home cooking and ingre­dient syner­gism improve lyco­pene isomer produc­tion in Sofrito. Food Rese­arch Inter­na­tio­nal (Ottawa, Ont.), 99(Pt 2), 851–861. https://doi.org/10.1016/j.foodres.2017.01.009

[82] Qin, S., Huang, L., Gong, J., Shen, S., Huang, J., Ren, H., & Hu, H. (2017). Effi­cacy and safety of turme­ric and curcu­min in lowe­ring blood lipid levels in pati­ents with cardio­vascu­lar risk factors: A meta-analy­sis of rando­mi­zed control­led trials. In Nutri­tion Jour­nal. https://doi.org/10.1186/s12937-017‑0293‑y

[83] Pour­ma­so­umi, M., Hadi, A., Rafie, N., Najaf­gho­liz­adeh, A., Moham­madi, H., & Rouhani, M. H. (2018). The effect of ginger supple­men­ta­tion on lipid profile: A syste­ma­tic review and meta-analy­sis of clini­cal trials. Phyto­me­di­cine : Inter­na­tio­nal Jour­nal of Phyto­the­rapy and Phyto­phar­ma­co­logy, 43, 28–36. https://doi.org/10.1016/j.phymed.2018.03.043

[84] Santos, H. O., & da Silva, G. A. R. (2018). To what extent does cinna­mon admi­nis­tra­tion improve the glyce­mic and lipid profiles? Clini­cal Nutri­tion ESPEN, 27, 1–9. https://doi.org/10.1016/j.clnesp.2018.07.011

[85] Jamali, N., Jalali, M., Saffari-Chale­sh­tori, J., Samare-Najaf, M., & Samareh, A. (2020). Effect of cinna­mon supple­men­ta­tion on blood pres­sure and anthro­po­metric para­me­ters in pati­ents with type 2 diabe­tes: A syste­ma­tic review and meta-analy­sis of clini­cal trials. Diabe­tes & Meta­bo­lic Syndrome, 14(2), 119–125. https://doi.org/10.1016/j.dsx.2020.01.009

[86] Derosa, G., Maffi­oli, P., Simen­tal-Mendia, L. E., Bo, S., & Saheb­kar, A. (2016). Effect of curcu­min on circu­la­ting interleukin‑6 concen­tra­ti­ons: A syste­ma­tic review and meta-analy­sis of rando­mi­zed control­led trials. Phar­ma­co­lo­gi­cal Rese­arch, 111, 394–404. https://doi.org/10.1016/j.phrs.2016.07.004

[87] Saheb­kar, A., Cicero, A. F. G., Simen­tal-Mendia, L. E., Aggar­wal, B. B., & Gupta, S. C. (2016). Curcu­min down­re­gu­la­tes human tumor necro­sis factor-alpha levels: A syste­ma­tic review and meta-analy­sis ofran­do­mi­zed control­led trials. Phar­ma­co­lo­gi­cal Rese­arch, 107, 234–242. https://doi.org/10.1016/j.phrs.2016.03.026

[88] Singh, N., Baby, D., Rajguru, J. P., Patil, P. B., Thak­kan­na­var, S. S., & Pujari, V. B. (2019). Inflamma­tion and cancer. Annals of Afri­can Medi­cine, 18(3), 121–126. https://doi.org/10.4103/aam.aam_56_18

[89] Haykal, T., Samji, V., Zayed, Y., Gakhal, I., Dhil­lon, H., Kheiri, B., Kerbage, J., Veer­a­pa­neni, V., Obeid, M., Danish, R., & Bachuwa, G. (2019). The role of vitamin D supple­men­ta­tion for primary preven­tion of cancer: meta-analy­sis of rando­mi­zed control­led trials. Jour­nal of Commu­nity Hospi­tal Inter­nal Medi­cine Perspec­ti­ves, 9(6), 480–488. https://doi.org/10.1080/20009666.2019.1701839

[90] Podzol­kov, V. I., Pokrovs­kaya, A. E., & Pana­senko, O. I. (2018). Vitamin D defi­ci­ency and cardio­vascu­lar patho­logy. Tera­pev­ti­ches­kii Arkhiv, 90(9), 144–150. https://doi.org/10.26442/terarkh2018909144-150

[91] Halder, M., Petsophons­a­kul, P., Akbu­lut, A. C., Pavlic, A., Bohan, F., Ander­son, E., Maresz, K., Kramann, R., & Schur­gers, L. (2019). Vitamin K: Double Bonds beyond Coagu­la­tion Insights into Diffe­ren­ces between Vitamin K1 and K2 in Health and Dise­ase. Inter­na­tio­nal Jour­nal of Mole­cu­lar Scien­ces, 20(4). https://doi.org/10.3390/ijms20040896

[92] Wasi­lew­ski, G. B., Verv­loet, M. G., & Schur­gers, L. J. (2019). The Bone-Vascu­la­ture Axis: Calcium Supple­men­ta­tion and the Role of Vitamin K. Fron­tiers in Cardio­vascu­lar Medi­cine, 6, 6. https://doi.org/10.3389/fcvm.2019.00006

[93] George, E. S., Marshall, S., Mayr, H. L., Trak­man, G. L., Tatucu-Babet, O. A., Lasse­mil­lante, A.-C. M., Bramley, A., Reddy, A. J., Forsyth, A., Tier­ney, A. C., Thomas, C. J., Itsio­pou­los, C., & Marx, W. (2019). The effect of high-poly­phe­nol extra virgin olive oil on cardio­vascu­lar risk factors: A syste­ma­tic review and meta-analy­sis. Criti­cal Reviews in Food Science and Nutri­tion, 59(17), 2772–2795. https://doi.org/10.1080/10408398.2018.1470491

[94] Guasch-Ferre, M., Liu, G., Li, Y., Sampson, L., Manson, J. E., Salas-Salvado, J., Marti­nez-Gonza­lez, M. A., Stamp­fer, M. J., Willett, W. C., Sun, Q., & Hu, F. B. (2020). Olive Oil Consump­tion and Cardio­vascu­lar Risk in U.S. Adults. Jour­nal of the Ameri­can College of Cardio­logy. https://doi.org/10.1016/j.jacc.2020.02.036

[95] Lin, X., Zhang, I., Li, A., Manson, J. E., Sesso, H. D., Wang, L., & Liu, S. (2016). Cocoa Flava­nol Intake and Biomar­kers for Cardio­me­ta­bo­lic Health: A Syste­ma­tic Review and Meta-Analy­sis of Rando­mi­zed Control­led Trials. The Jour­nal of Nutri­tion, 146(11), 2325–2333. https://doi.org/10.3945/jn.116.237644

[96] Sun, Y., Zimmer­mann, D., De Castro, C. A., & Actis-Goretta, L. (2019). Dose-response rela­ti­ons­hip between cocoa flava­nols and human endo­the­lial func­tion: a syste­ma­tic review and meta-analy­sis of rando­mi­zed trials. Food & Func­tion, 10(10), 6322–6330. https://doi.org/10.1039/c9fo01747j

[97] Lara, J., Ashor, A. W., Oggioni, C., Ahlu­wa­lia, A., Mathers, J. C., & Siervo, M. (2016). Effects of inor­ga­nic nitrate and beetroot supple­men­ta­tion on endo­the­lial func­tion: a syste­ma­tic review and meta-analy­sis. Euro­pean Jour­nal of Nutri­tion, 55(2), 451–459. https://doi.org/10.1007/s00394-015‑0872‑7

[98] Bonilla Ocampo, D. A., Paipilla, A. F., Marin, E., Vargas-Molina, S., Petro, J. L., & Perez-Idar­raga, A. (2018). Dietary Nitrate from Beetroot Juice for Hyper­ten­sion: A Syste­ma­tic Review. Biomole­cu­les, 8(4). https://doi.org/10.3390/biom8040134

Stetoskop

PRÄVENTION

Allgemeine Empfehlungen zur Prävention
Arzt mit Datenblatt

KREBSARTEN

Die häufigsten Krebsarten und wie man Ihnen vorbeugen kann
Arzt reicht frische Früchte und Gemüse

ERNÄHRUNG

Ernährungstipps und Empfehlungen